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Abstract

A long standing goal of quantitative research in cognitive psychology has been to provide a lawful description of the retention of

information over time. While a number of theoretical alternatives for a retention function have been developed, their empirical

evaluation has almost exclusively relied on their ability to fit experimental data. This has meant that the issue of model complexity,

which considers the number of parameter in a model and the functional form of parameter interaction, has generally not been

considered in a rigorous way. This paper develops a Bayesian method for comparing retention models that naturally considers the

competing demands of goodness-of-fit and complexity. We first implement the Bayesian method using numerical techniques,

highlighting the basic properties of the method and showing, in particular, how assumptions about the precision of the data affect

the inferences that are drawn. We then develop an analytic Bayesian method, based on the Laplacian approximation, that offers

some theoretical insights into the inherent complexities of different retention functions, and has the practical advantage of being

computationally efficient. We demonstrate both methods by evaluating linear, hyperbolic, exponential, logarithmic and power

retention functions against the collection of data sets considered by Rubin and Wenzel (1996).

r 2004 Elsevier Inc. All rights reserved.
1. Introduction

From the time of Ebbinghaus (1885/1964), a goal of
memory research has been to provide a lawful descrip-
tion of the retention of information over time. A
successful descriptive model of retention would provide
not only a basic constraint for theorizing about
memory, but also a predictive capability with significant
potential for application.

The search for a model of memory retention has
proceeded on both theoretical and empirical fronts. A
range of different theoretical mechanisms for describing
memory retention have been developed, based on a
variety of conceptual perspectives (e.g., Anderson &
Schooler, 1991; Estes, 1997; Laming, 1992). Empirically,
there have been many attempts to evaluate candidate
e front matter r 2004 Elsevier Inc. All rights reserved.
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theoretical models by testing their ability to capture data
that have been collected using a variety of experimental
methodologies. For the most part (e.g., Anderson &
Schooler, 1991; Rubin & Wenzel, 1996; Rubin, Hinton,
& Wenzel, 1999; Wixted & Ebbesen,1991,1997), the
empirical evaluation of competing models has relied on
goodness-of-fit measures, such as the percentage of
variance explained.

Unfortunately, as Roberts and Pashler (2000) have
recently argued, the practice of distinguishing between
competing psychological models solely on the basis of
their ability to fit data faces a number of serious
problems. One of these problems, which has been a
recent focus in mathematical psychology (e.g., Myung,
Balasubramanian, & Pitt, 2000a; Myung, Forster, &
Browne, 2000b; Myung & Pitt, 1997; Pitt, Myung, &
Zhang, 2002), is that solely measuring goodness-of-fit
fails to account for differences in the complexity of
competing models. The complexity of a model is
basically a measure of its ability to fit any data set well,
regardless of whether those data could ever arise from

www.elsevier.com/locate/jmp
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the psychological process being modeled. Overly com-
plicated models achieve high levels of fit through being
flexible enough to capture the random variation, or
noise, present in a particular set of data, and so do not
necessarily provide a better account of the regularities in
the data. This means, in turn, that complicated models
will generalize poorly to new data observed at another
time or in another context, and so will have less
predictive capability than simple models that fit the
current data well.

For these reasons, psychological models should strive
to balance the competing demands of fit and complexity,
providing the simplest possible accurate account of the
available data. In the absence of any attempt to control
for model complexity, there is no guarantee that the best
fitting retention models do not achieve their accuracy
only through being more complicated than their
competitors. Many previous studies have been aware
of this issue (e.g., Rubin & Wenzel, 1996; Rubin et al.,
1999; Wixted & Ebbesen, 1997), although they seem
generally to have equated the complexity of a model
complexity with its number of free parameters. As
Myung and Pitt (1997) make clear, however, model
complexity also has a ‘functional form’ component,
determined by the way parameters interact within a
model. This means that two models with the same
number of parameters will, in general, have different
complexity, because they will assume different func-
tional forms. The rigorous evaluation of competing
retention models requires a methodology that takes into
account the goodness-of-fit and both sources of model
complexity.

This paper presents a Bayesian methodology for
evaluating retention models that naturally accounts for
both fit and complexity, and provides an intuitive
framework for interpreting and understanding the
results of these comparisons. The developed method is
general, in the sense that it could be used to evaluate any
collection of retention functions against any set of data.
To demonstrate the method, however, we consider the
five retention functions—linear, hyperbolic, exponential,
logarithmic and power functions—canvassed by Rubin
and Wenzel (1996), and evaluate them in terms of the
210 collated data sets they considered. This is not
intended to imply that these particular retention
functions are the only serious theoretical possibilities,
and is certainly not intended to imply that Rubin and
Wenzel’s (1996) collated data provide a definitive test-
bed. Indeed, the same authors have raised questions
about whether the data can support a conclusive test of
retention functions (Rubin et al., 1999). What Rubin
and Wenzel’s (1996) study does provide, however, are
specific data sets on which to demonstrate the Bayesian
approach.

The structure of this paper is as follows: The next
section provides an overview of the Bayesian approach
to model selection. A case study, using one of the Rubin
and Wenzel (1996) data sets, is then presented, showing
how the Bayesian approach balances goodness-of-fit
and model complexity, and developing two methods for
evaluating retention functions. The more efficient of
these methods is then applied to all of the Rubin and
Wenzel (1996) data sets, showing how evidence from
many sources can be combined to evaluate models.
Finally, the general discussion considers variants on the
Bayesian methodology.
2. Bayesian model evaluation

This section presents a brief overview of some aspects
of Bayesian model evaluation and selection, and
provides the necessary statistical background for the
various methods used in analyzing the retention models.
More detailed treatments of Bayesian methods may be
found, for example, in Carlin and Louis (2000), Jaynes
(2003), Kass and Raftery (1995), Gill (2002), Leonard
and Hsu (1999), and Sivia (1996). Readers familiar with
Bayesian methods may safely skip this section.

At the heart of Bayesian analysis is Bayes’ theorem,
which specifies the way in which the prior probability of
a model being true, pðMÞ is altered by the evidence
provided by data to become a posterior probability,
pðM jDÞ:

pðM jDÞ ¼
pðD jMÞ

pðDÞ
pðMÞ:

Intuitively, the evidence provided by data is measured
by the probability that the observed data would have
arisen under the assumption that the model were true,
pðD jMÞ; normalized by the probability that the data
would have arisen under any set of assumptions, pðDÞ:

For parameterized models, measuring the probability
of observed data arising under the assumption that the
model is true involves considering the match between
the data and the model in all of its parameterizations.
This means that pðD jMÞ becomes a marginal prob-
ability, obtained by integrating the probability of the
data for each of the possible parameter combinations,
pðD j y;MÞ; as weighted by the prior probability of each
of these combinations pðy jMÞ:

pðD jMÞ ¼

Z
pðD j y;MÞpðy jMÞ dy: (1)

A particularly useful form of Bayes’ theorem con-
siders the posterior odds for two models. This is simply
the ratio of their prior probabilities, multiplied by the
ratio of the marginal probabilities:

pðMi jDÞ

pðMj jDÞ
¼

pðD jMiÞ

pðD jMjÞ

pðMiÞ

pðMjÞ
;
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Fig. 1. Surface plot showing the level of fit for the five retention

functions on the Squire (1989) data, across the parameter space

ranging from 0 to 2 for both the m and b parameters. From left to

right, the functions are the logarithmic, power, linear, exponential and

hyperbolic functions.
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where the ratio of the posterior to the prior odds is
usually called the ‘Bayes factor’. This form is useful
because it directly compares two models in a way that is
naturally interpretable. As Kass and Raftery (1995, p.
777) argue, probabilities lie on a scale defined by betting,
and so the ratio of posterior probabilities is a mean-
ingful number. A posterior probability ratio of ten, for
example, means that the first model is ten times more
likely than the second model. In the same way, the Bayes
factor is easily interpreted as quantifying the evidence
that the observed data provides for one model over the
other. Kass and Raftery (1995, p. 777) give a number of
alternative interpretative frameworks for these prob-
ability ratios, which essentially amount to suggested
standards of scientific evidence.

Another useful form of Bayes’ theorem involves
model averaging, where the probability of the data
being observed pðDÞ is partitioned into the probability
of it being observed under each of an exhaustive set of
alternative models, so that

pðMi jDÞ ¼
pðD jMiÞP
j pðD jMjÞ

:

As Carlin and Louis (2000, p. 50) note, there are often
too many plausible alternative models that need to be
considered for model averaging to be a practical method
of calculating the posterior probability of a model. In
these cases, it may be useful to consider a small set of
competing models that are of particular interest, and
define a measure

Hi ¼
pðD jMiÞP
j pðD jMjÞ

; (2)

which effectively measures the posterior probability of
model Mi relative to the other competing models.

Finally, in Bayesian analyses, it is important to
consider the concept of precision, which measures the
level of noise in empirical data that obscures the
regularities coming from an underlying cognitive pro-
cess. When observed data are precise (i.e., relatively
noise free), the introduction of additional complexity
into a model to achieve a greater level of descriptive
accuracy may well be warranted. When observed data
are imprecise (i.e., relatively noisy), however, the same
increase in complexity will not be warranted, because
the extra complexity will tend to be used to fit the noise.
As argued by Lee (2001, p. 155), this means that a
quantitative estimate of data precision is needed to
determine the appropriate balance between goodness-of-
fit and model complexity. If such an estimate is not
available, it is necessary either to make explicit
assumptions about data precision, or undertake broader
analyses that consider the entire plausible range of data
precision possibilities. Note that this conceptualization
of precision makes it fundamentally a property of the
data, in the sense that it parameterizes the way data are
summarized before any particular model has been
considered.
3. A case study

This section develops the methodology for Bayesian
analysis of retention functions by focusing on one
particular data set from Rubin and Wenzel (1996).

3.1. The retention functions

We consider the five retention models given particular
attention by Rubin and Wenzel (1996), which assume
linear, hyperbolic, exponential, logarithmic and power
functions. For a particular time interval ti; the linear
model predicts a retention value, ŷi ¼ �mti þ b; where
m and b are non-negative parameter values. Different
predictions are made by the other models, using the
functional relationships ŷi ¼ 1=ðmti þ bÞ for the hyper-
bolic model, ŷi ¼ b expð�mtiÞ for the exponential
model, ŷi ¼ b � m ln ti for the logarithmic model, and
ŷi ¼ bt�m

i for the power model.

3.2. The retention data

The particular data set chosen was that presented by
Squire (1989, Fig. 1A), measuring the average accuracy
with which television shows were recalled after time
periods ranging up to 15 years. The data may be
represented as two vectors, t ¼ ðt1; t2; . . . ; tnÞ and y ¼

ðy1; y2; . . . ; ynÞ; respectively denoting the time (measured
in years), and the recall (measured in terms of
proportion correct). Each ðti; yiÞ pair gives the yi
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proportion of shows correctly recalled after ti years. The fit
of a memory retention function to these data is a measure
of the agreement between the recall it predicts, ŷi; and the
observed recall, yi over all of the n data points.

For all of the retention functions considered by Rubin
and Wenzel (1996), the predictions made depend not
only upon the independent variable time, but also upon
two parameters, m and b: If it is assumed that each of
the observed recall proportions yi comes from a
Gaussian distribution with common variance s2; for
which we have an estimate s2; then a probabilistic
measure of fit for a particular parameterization of a
retention function is given by:1

pðy jm; b; tÞ ¼
Yn

i¼1

1

ð2ps2Þ
1
2

exp �
ðyi � ŷiÞ

2

2s2

� �

¼
1

ð2ps2Þ
n
2

exp �
1

2s2

Xn

i¼1

ðyi � ŷiÞ
2

 !
: ð3Þ

The value of s measures the precision of the data,
taking smaller values for more precisely observed recall
proportions. Lee (2001, p. 155) suggests that, for
averaged data, the mean of the sample standard
deviation for each of the data points furnishes an
appropriate estimate. Squire (1989, p. 244) reports that
the standard deviations for the recall proportions were
similar, symmetric around the mean, and ranged from
24.2% to 28.3%. In light of this information, a
reasonable estimate for normalized data might be s �

0:25; although it is still important to undertake an
analysis across a broader range of s values, to test the
sensitivity of any conclusions to the exact assumption
made regarding data precision.

With the probabilistic measure of fit given by Eq. (3)
in place, it is possible to measure the marginal
probability of Eq. (1) required for a Bayesian analysis.
This involves measuring the fit across the entire
plausible set of parameter values m and b: For all of
the retention models, this parameter space is simply the
quadrant of the two-dimensional plane corresponding to
positive m and b values.
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Fig. 2. A contour plot showing the level of fit for the five retention
3.3. Numerical approximation

The most straightforward approach to evaluating the
integral that defines the marginal probability uses a
simple numerical method. By using a large number of
parameter values fy1; y2; . . . ; yNg according to their prior
probability, the marginal probability may be estimated
as

pðD jMÞ �
1

N

XN

i¼1

pðD j yi;MÞ:
1Later we provide a critical discussion of the Gaussian assumption.
In terms of the retention data at hand, it is
computationally feasible to impose a grid on the two-
dimensional parameter space, and sample at each point
on the grid. For sets of m and b parameter values given
by m1;m2; . . . ;mNf g and fb1; b2; . . . ; bNg; which define
the extent and resolution of the grid, the numerical
approximation becomes

pðD jMÞ � Z
1

N2

XN

i¼1

XN

j¼1

pðy jmi; bj ; tÞ;

where Z is a constant relating to the spacing of the grid
from which samples are drawn, and so is the same for all
models. This approximation was applied to the Squire
(1989) data, using a grid that extended from 0 to 2 for
both m and b parameters, and increasing in steps of
0.005 for both parameters, which proved a small enough
step size that further refinement did not change the final
Bayes factors significantly. A range of precision
estimates were considered, increasing from s ¼ 0:05 to
s ¼ 0:5 in steps of 0.05.

The results of these calculations are depicted graphi-
cally for s ¼ 0:25 in Figs. 1 and 2. The surfaces in Fig. 1
indicate by their heights the level of fit achieved by each
of the five functions at each point in the two-
dimensional parameter space. In particular, the highest
peaks for each function correspond to the maximum
goodness-of-fit at the best parameter values. It can be
seen that the logarithmic and power function are the
best fitting, followed by the hyperbolic, then the
exponential, then the linear function. It is also clear,
functions on the Squire (1989) data, across the parameter space

ranging from 0 to 2 for both the m and b parameters.
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however, that the good fits of the logarithmic and power
functions occur at a very narrow set of parameter
values, while the hyperbolic function fits reasonably well
at a large number of parameterizations. These differ-
ences in complexity are even clearer in Fig. 2, which
shows contour plots of the same information. It can be
seen that the hyperbolic function fits across a broader
range of parameter values than the exponential func-
tion, which in turn has a broader range than the linear,
power and logarithmic functions.

Figs. 1 and 2 provide intuitive graphical support for
two of the basic assumptions made in the Bayesian
analysis. First, it is clear that the range of the parameter
space is sufficient to cover all of the appreciable density
being integrated, and so extending the grid would not
change the results. Secondly, it is clear that prior
assumptions about the values of the m and b parameters
would affect the conclusions only if they gave appreci-
ably different density to those regions of the parameter
space where there is reasonable fit. Any vague prior, like
the uniform prior used, that does not modulate the
peaks in Fig. 2, will result in the same conclusions. This
is because the data quickly dominate the prior through
the likelihood function.

Fig. 3 presents the basic pattern of results evident in
Figs. 1 and 2 in a different way, by showing the data and
those parameterizations of each function that exceeded a
pre-determined threshold level of fit, where the thresh-
old has been chosen to make the display visually
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Fig. 3. The Squire (1989) data, and the parameterizations of each of the fi
informative. The hyperbolic function clearly has the
most parameterizations that meet the threshold, fol-
lowed by the exponential function, with the linear,
power and logarithmic fitting less often. Both the power
and logarithmic functions, however, have parameteriza-
tions that achieve better fit to the data than the
hyperbolic or exponential functions. The linear func-
tion, meanwhile, does not exhibit close levels of fit for
any parameterization, nor do many parameterizations
reach the threshold.

In terms of the balance between goodness-of-fit and
complexity, these results indicate that the power and
logarithmic models are capable of achieving better fit to
the data, but are more complicated than the hyperbolic
and exponential functions, because their fit is less robust
across parametric variation. This raises the possibility
that the ability of the power and logarithmic models to
fit the data may have less to do with the functions they
use being the appropriate ones to capture the retention
data, and more to do with the functions being
sufficiently flexible to accommodate any data (including
data that would never be observed in a memory recall
experiment) by adjusting their parameter values. The
hyperbolic and exponential models, in contrast, robustly
predict retention curves that resemble the observed data,
even though their best fits are not as impressive.

Resolving the trade-off between the better descriptive
accuracy of the power and logarithmic models, and the
lesser complexity of the hyperbolic and exponential
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ve retention functions that exceed a threshold level of fit to the data.
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models, can only be made through recourse to the
precision of the observed data. If the data were
measured arbitrarily precisely (corresponding to a
precision value s approaching zero), the issue of
robustness across different parameterizations would
not arise. The best model would simply be the model
that provided the most accurate description of the data,
as measured by its best level of fit. As the data become
less precise, however, the robustness or complexity of
the models becomes relatively more important, and
should be weighted progressively more highly than fit.
In the limit, as data become infinitely noisy, they are not
capable of providing evidence for or against any model,
and neither fit nor complexity help distinguish between
competing alternatives.

This pattern is consistent with the numerical analysis.
The marginal probability of the data having arisen
under the assumption that a particular retention model
is true is given by the area under the distributions shown
in Figs. 1 and 2. For precise data, corresponding to
small values of s; these distributions will fall away from
their peak at the best fitting parameter values quickly.
This means that the height of the peak, corresponding to
the maximal level of fit, will largely determine the area
under the distribution. However, as the data become less
precise, and s becomes larger, the distribution will fall
away less quickly, and the robustness of the fit across
parameter values will play a progressively greater role in
determining the area. Finally, as s tends towards
infinity, every function will fit the data equally
poorly at every parameter value, the distributions will
become completely flat, and will each encompass the
same area.

For the Squire (1989) data, because a precision
estimate of s � 0:25 is available, it is possible to strike
an appropriate balance between fit and complexity. This
is naturally done through calculating the Bayes’ factors
for each pair of models. It turns out that, using
numerical analysis, the hyperbolic model has the great-
est posterior probability, being approximately 3.4, 6.7,
13.0 and 16.4 times more likely than the exponential,
linear, power and logarithmic models, respectively.
Obviously, the Bayes’ factors between any other pair
of models can be derived from these ratios. The
important result is that, at the estimated level of data
precision, the hyperbolic model constitutes the best
balance between fit and inherent complexity, and is most
strongly supported by Squire’s (1989) data.

Despite being able to provide these sort of insights,
numerical analysis suffers from two shortcomings. First,
it is computationally intensive when a broad range of
parameter values must be sampled, or when the
resolution of the imposed grid must be increased to
improve accuracy. It is for this reason that a wide range
of computational mechanisms for improving the accu-
racy of numerical analysis have been developed (e.g.,
Gilks, Richardson, & Spiegelhalter, 1996; Smith &
Roberts, 1993). The second shortcoming, however, is
more fundamental. Numerical analysis does not offer
the possibility of gaining any analytic insight into the
inherent complexities of competing models, since it only
provides a method for dealing with a particular set of
data.
3.4. The Laplacian approximation

Both of the shortcomings of numerical analysis are
potentially overcome by using what is known as the
Laplacian approximation to the marginal probability
(see, for example, Carlin & Louis, 2000, pp. 122–129;
Kass & Raftery, 1995, pp. 777–778; Leonard & Hsu,
1999, pp. 191–194). This approximation treats each of
the distributions shown in Fig. 1 as Gaussian distribu-
tions, with a mean given by the best fitting parameter
values, and a co-variance matrix given by a matrix of
second derivatives. By making this assumption, the area
under the distribution is easily calculated, and the form
of the co-variance matrix provides information relating
to the complexity of a model.

For a general model with a vector of P parameters
y ¼ ðy1; y2; . . . ; yPÞ; with all of the possible parameter-
izations being a priori equally likely, the Laplacian
approximation is given by

pðD jMÞ �
ð2pÞP=2pðD j y
;MÞ

ðdet Iðy
ÞÞ
1
2

; (4)

where y
 are the best fitting parameter values. The
matrix Iðy
Þ is the Hessian matrix of second derivatives
of the log probability, defined by

I ijðyÞ ¼
q2 ln pðD j y;MÞ

qyiqyj

;

evaluated at the best fitting parameter values.
Following Myung and Pitt (1997), the Laplacian

approximation may be interpreted in terms of two
components. The term pðD j y
;MÞ measures the fit of
the model to the available data. For models with the
same number of parameters P; the denominatorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det Iðy
Þ
p

is the only way in which model complexity
contributes to the posterior probability, and in this sense
provides a measure of the functional form complexity of
the model.

For the probabilistic measure of the fit of a retention
function given by Eq. (3), the log probability is
essentially the familiar sum-squared error, scaled by
the data precision estimate:

� ln pðy jm; b; tÞ ¼
1

2s2

X
i

ðyi � ŷiÞ
2
þ

n

2
ln 2ps2:
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The required Hessian matrix of this log probability is
the 2 � 2 matrix

Iðm; bÞ

¼
1

2s2

q2=qm2
P

i ðyi � ŷiÞ
2 q2=ðqmqbÞ

P
i ðyi � ŷiÞ

2

q2=ðqbqmÞ
P

i ðyi � ŷiÞ
2 q2=qb2P

i ðyi � ŷiÞ
2

" #
:

The derivation of the determinant of this matrix for each
of the five retention functions is a straightforward
algebraic exercise. The results of the derivation may be
summarized by setting I ¼ 1

s2 G; and giving the determi-
nant of the matrix G: Under the Laplacian approxima-
tion, it is the square root of this determinant that
measures the functional form complexity of a model.
For the linear function, it turns out that

detG ¼ n
X

i

t2
i �

X
i

ti

 !2

;

which is simply n times the variance of the time data values
t: This means, as has previously been noted by MacKay
(1992), that the complexity of a linear function fit to data
may be minimized by choosing values along the indepen-
dent variable with maximal variance. A related result is
achieved for the logarithmic function, where

detG ¼ n
X

i

ðln tiÞ
2
�

X
i

ln ti

 !2

;

which corresponds to n times the variance of ln t: This is to
be expected, given the relationship between the linear and
logarithmic models. Intuitively, as noted by Rubin and
Wenzel (1996, p. 749), the difference is that the linear
model assumes equal intervals of time are important, while
the logarithmic model assumes that equal ratios of time
are important. Their different complexity measures simply
assess the extent to which time intervals have been chosen
that are consistent with these assumptions.

The complexity results for the other functions are less
interpretable, but nonetheless provide efficient formulae
for calculating the complexity component of the
Laplacian approximation. For the exponential function,
the result is

detG ¼
1

b2

X
i

X
j

ŷiŷjtjð2ŷj � yjÞðŷitj � titð2ŷi � yiÞÞ;

for the power function, the result is

detG ¼
1

b2

X
i

X
j

ŷiŷj ln tjð2ŷj � yjÞ

�ðŷi ln tj � ln tið2ŷi � yiÞÞ;

and for the hyperbolic function, the result is

detG ¼
X

i

X
j4i

ŷ3
i ŷ3

j ð2yi � 3ŷiÞð2yj � 3ŷjÞðti � tjÞ
2:
3.5. Accuracy of the Laplacian approximation

The accuracy of the Laplacian approximation may be
assessed in a direct way by comparing the posterior
probabilities it produces with those obtained by the
numerical analysis, which makes no approximating
assumptions. This was done for ten of the data sets
considered by Rubin and Wenzel (1996), chosen to
cover a breadth of sample sizes, experimental meth-
odologies, and differences in the fits of the five retention
functions. The particular data sets used were those
reported by Bahrick, Bahrick, and Wittlinger (1975,
Table 4, free recall condition), Bean (1912, Table 6),
Burtt and Dobell (1925, Table 1), Conway, Cohen, and
Stanhope (1991, Fig. 4), Finkenbinder (1913, Table 2),
Jarrard and Moise (1970, Fig. 1), Luh (1922, Table 6),
Squire (1989, Table 1A), Thompson (1982, Fig. 2), and
Tsai (1924, Table 2). These studies were conducted
between 1912 and 1991, and have sample sizes as low as
5 and as high as 15, which are essentially the extremes
available in the Rubin and Wenzel (1996) data. They
involved free recall, serial recognition, construction,
relearning, typing, maze running, delayed matching,
grouping and dating tasks. They used (in no particular
order) adults, graduate students, primates and under-
graduate students as participants, and they measured
retention across time periods ranging from 1–28 s, to
1–15 years.

A regression analysis was undertaken comparing the
(logarithm of) the Bayes’ factors produced by the
numerical analysis with the (logarithm of) the Bayes’
factors produced by the Laplacian approximation, for
all 5 � 4=2 ¼ 10 possible pairs of retentions functions,
at each estimated s value ranging from 0.05 to 0.50 in
steps of 0.05. This revealed a linear relationship with
a slope of 0.984 and an intercept of 0.000 that explained
99.7% of the variance, indicating that the two measures
are virtually identical. On these grounds, it seems safe to
accept the Laplacian approximation of marginal prob-
abilities as being sufficiently accurate to make the sort of
model selection decisions that are part of a Bayesian
analysis.

3.6. Other approaches

These results show that more sophisticated approx-
imations to the Bayesian posterior, such as the
Stochastic Complexity Criterion (SCC: Rissanen,
1996), and the Geometric Complexity Criterion (GCC:
Myung et al., 2000a), are not necessary on the grounds
of accuracy. Measures like the SCC and GCC do offer
reparameterization invariance, but we believe this is not
fundamentally important. Models of retention, like
models of most psychological phenomena, seek to
use parameters with meaningful interpretations to
gain insight and understanding. This means that
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Table 1

The fit and complexity of the retention functions for Squire’s (1989)

data

Function Proportion of

variance explained

Functional form complexity

Linear 0.884 4.32

Hyperbolic 0.922 2.02

Exponential 0.904 2.98

Logarithmic 0.955 11.3

Power 0.946 11.5
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reparameterization invariance, while clearly a desirable
property if all other things are equal, is not crucial in the
same way it might be for ‘black box’ models that are
nothing more than indexable probability distributions
over data.

The important invariances for psychological model-
ing, we believe, are those inherent in the description of
the problem itself. Jaynes (2003, Chapter 12) presents a
compelling case that the rational approach to defining
‘complete ignorance’ priors is by defining transforma-
tions that leave a problem unchanged in substance, but
affect aspects of its quantitative description. The prior
distributions for parameters must necessarily be invar-
iant under these transformations, since they leave the
problem unchanged. The invariances, in turn, often
provides a strong constraint of the form of priors, or
define them uniquely. Retention modeling has one
obvious transformational invariance, relating to the
measurement scale of the times. The performance of a
retention model should give the same results for the
same data set whether the times are represented, for
example, in second or milliseconds. This implies that the
appropriate prior distributions for retention model
parameters should lead to the same performance under
positive scalar multiplication of the time data. It is a
worthwhile topic for future research to find these priors,
which will be allied to a specific parameterization of a
retention model, and would generally change under
reparameterization. In the meantime, the Laplacian
approximation used here, like other approximations,
makes different assumptions about prior distributions,
and so relies on the evidence provided by data
dominating prior information to justify its results. As
noted earlier, for the data analyzed here, any diffuse
prior will lead to essentially the same conclusions.

In considering alternative approaches, it is also worth
noting that Minimum Description Length (MDL)
methods (e.g., Grünwald, 2000) have the theoretical
advantage that they do not make Bayesian assumptions
about ‘true’ models, but focus on ‘useful’ models that
compress data by finding regularities. How this theore-
tical distinction manifests itself is not entirely clear. We
are not aware of any practical examples in psychology
where Bayesian inference behaves inappropriately be-
cause the statistical process that generates data is not
contained in the set of models being considered, even
though it seems this must almost always be the case.
Finally, it is interesting to observe that the Bayesian
Laplacian measure is closely related to the MDL
approach used by the SCC.2 Basically, the Laplacian
measure is an approximation to the SCC under the
simplifying assumption that the Hessian matrix I can be
2I thank Jay Myung for drawing my attention to this correspon-

dence.
evaluated only at the best fitting parameters y
; rather
than being integrated across the entire parameter space.
3.7. Application of the Laplacian approximation

Table 1 details the goodness-of-fit and complexity of
the five retention models found by applying the
Laplacian approximation to the Squire (1989) data.
The goodness-of-fit is measured in terms of the
proportion of variance explained, while the complexity
is measured by

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
: These results confirm the

patterns observed in the numerical analysis. The
logarithmic and power models provide the best fit, but
are more complicated than the linear model, which is in
turn more complicated than the exponential and
hyperbolic models.

As before, the competing claims of fit and complexity
for the models can only be resolved by understanding
the precision of the data. For any data precision
estimate s; the values in Table 1 may be used in the
Laplacian approximation of Eq. (4) to estimate margin-
al probabilities, Bayes’ factors, or the various other
interpretable measures discussed earlier. Perhaps the
most useful analysis is in terms of the relative posterior
probabilities defined in Eq. (2), which may be re-written
as

HiðsÞ ¼
pðD jMiÞP
j pðD jMjÞ

to indicate explicitly the dependence on data precision.
Fig. 4 shows the relative posterior probabilities for

each of the five retention models, for the Squire (1989)
data, ranging from s ¼ 0:01 to s ¼ 0:50: It can be seen
that, if the data are assumed to be very precise, the
relative probabilities of models reflects their accuracy. In
particular, the logarithmic model, which has the best fit,
is strongly preferred. As the assumed level of precision
decreases, however, the models are ordered in terms of
their complexity, with the hyperbolic model having the
greatest value. This preference is less marked, however,
with imprecise data providing some evidence for all of
the models. Overall, the pattern of change in the H
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values concurs with the preceding analysis of the data,
and provides a simple means of visualizing the fit and
complexity behavior of the competing models across
different levels of data precision.
4. General evaluation

Having established an efficient method, based on the
Laplacian approximation, for evaluating the relative
posterior probabilities of the five retention models for
any given data set, we now examine all of the data sets
collated by Rubin and Wenzel (1996). Following the
assertion of these authors that the autobiographical
retention data are fundamentally different, five data sets
were not considered. For the remaining 205 data sets,
the goodness-of-fit and functional form complexity of
each of the five retention models were calculated. The
results of this analysis are given in Table 2, which is
Table 2

The relative goodness-of-fit and complexity rankings of the five retention func

five dealing with autobiographical recall

Function Goodness-of-fit

1st 2nd 3rd 4th 5

Linear 6 1 12 9

Hyperbolic 28 14 56 1

Exponential 8 24 11 57

Logarithmic 28 39 11 20

Power 30 22 10 13

For fit, the percentage of data sets for which each function was ranked in eac

For complexity, the percentage of data sets for which each function was ranke

complicated (5th).
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Fig. 4. The relative posterior probabilities for each of the five retention

models on the Squire (1989) data, with assumed levels of data precision

s ranging from 0.01 to 0.50.
based on the rank orderings of fit and complexity. The
entries in Table 2 give the percentage of data sets for
which each function has the best fit (1st), the second best
fit (2nd), through to the worst fit (5th), and the
percentage of data sets for which each function has the
lowest complexity (1st), the second lowest complexity
(2nd), through to the highest complexity (5th).

In terms of goodness-of-fit, Table 2 shows that the
hyperbolic, logarithmic and power functions were the
best fitting functions approximately equally often, while
the linear function was most often the worst fitting
function. In terms of complexity, Table 2 shows that the
hyperbolic function was always the least complicated
and the exponential function was almost always the
second least complicated, while the logarithmic function
was always the most complicated.

Fig. 5 shows the results of a relative posterior
probability analysis across the 205 data sets. The pattern
of change in the mean relative posterior probability for
each function as data precision changes is shown,
together with error bars showing one standard error.
These curves are based on a set of precision values
ranging from 0.025 to 0.50 in steps 0.025, together with
a relative posterior probability for the case of arbitrarily
precise data (s ¼ 0), calculated by comparing only the
goodness-of-fit of the competing models.

Fig. 5 indicates that the hyperbolic, power and
logarithmic models provide the best fits for data sets
approximately equally often. This is indicated by all
three models having approximately the same relative
posterior probabilities of about 0.3 at s ¼ 0; where
effectively only goodness-of-fit is measured. However, as
the assumed level of data precision worsens, the inherent
complexity of the power and logarithmic functions
means that the hyperbolic function comes to have the
greatest relative posterior probability. Similarly, the
lower complexity of the exponential functional form
leads to it also assuming significant relative posterior
probability for larger s values. Meanwhile, the linear
model, which has both poor fit and moderately high
tions across all of the Rubin and Wenzel (1996) data sets, except for the

Complexity

th 1st 2nd 3rd 4th 5th

72 0 0 29 71 0

1 100 0 0 0 0

0 0 98 2 0 0

2 0 0 0 0 100

25 0 2 69 29 0

h position is shown, going from best fitting (1st) to worst fitting (5th).

d in each position is shown, going from least complicated (1st) to most
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Fig. 5. The mean relative posterior probabilities, as a function of data

precision, for each of the five retention models on all of the Rubin and

Wenzel (1996) data sets, except for the five dealing with autobio-

graphical recall.

M.D. Lee / Journal of Mathematical Psychology 48 (2004) 310–321 319
complexity, sustains almost no relative posterior prob-
ability at any stage.

It should be acknowledged that the averaging process
used to generate the results shown in Fig. 5 is not
entirely justified. Averaging would be most appropriate
if the underlying curves for all of the data sets were the
same, except for measurement error. Visual inspection
of the individual curves suggests, however, that there are
qualitative differences between some of the curves, and
developing an understanding of these differences is an
important area for future research. For the moment,
however, Fig. 5 provides a convenient graphical
summary representation that captures the main message
of the Bayesian analysis: That the simplicity of the
hyperbolic function makes it a preferable model to the
power and logarithmic models for retention data that
are not very precise.

Ideally, it would be possible to estimate the precision
using the sample standard deviation, and determine the
vertical line (or a limited region) in Fig. 5 that should be
used to make model selection decisions. Unfortunately,
most published retention data sets do not report the
necessary statistics, nor do they provide the relevant raw
data. As Rubin and Wenzel (1996, p. 756) lament ‘In the
existing literature, confidence intervals are rarely re-
ported, cannot be calculated from reported statistics in
most procedures, and when they can are too large to
reject functions’. The reported standard deviations of
about 0.25 for the Squire (1989) data accord with this
belief in large confidence intervals, although the 25 year
time span covered by this data raises the possibility that
it is less precise than others. A few of the Rubin and
Wenzel (1996, p. 756) datasets are available in the raw
form required for precision estimation, and these
happen to be studies involved much shorter (less than
20 s) time spans. Estimating the precision for these data
sets, therefore, may provide some guidance as to how
precise the retention data might plausibly be. To this
end, the data reported in Jans and Catania (1980, Table
1) were found to have sample standard deviations of
0.117 and 0.101 for the ‘standard’ and ‘activity’
conditions respectively, while the Harnett, McCarthy,
and Davison (1984, Appendix B) data were found to
have a sample standard deviation of 0.0827.

Without access to all of the necessary data, any
determination of data precision must be heavily
subjective. However, all of the precision estimates
obtained from individual data sets favor the hyperbolic
model, and Fig. 5 makes it clear that a precision
estimate of so0:05 for the data would required before
the power and logarithmic models rivaled the hyperbolic
model. Given that Rubin et al. (1999, p. 1161) believe
their data are not precise, it seems reasonable to
conclude that the Bayesian analysis presented here
favors the hyperbolic model.
5. General discussion

The conclusions from the Bayesian evaluation of the
Rubin and Wenzel (1996) data make sense. The
imprecise data essentially contain only one regularity,
in the form of a negatively accelerating downward
change in retention over time. This regularity is
incompatible with the linear model, but is accommo-
dated by the other four functions. Accordingly, the
Bayesian analysis chooses the simplest functional form
that has the observed regularity, which is the hyperbolic
function. Because the Bayesian approach is sensitive to
the precision of data, evaluating the same functions
using more precise empirical data might well lead to
different conclusions. All that can be concluded from
the analysis presented here is that the data were not
sufficiently noise free to warrant any more complicated
negatively accelerating downward function than the
hyperbolic function. In this sense, the Bayesian meth-
odology for evaluating retention functions naturally and
directly places the onus on researchers to collect precise
measures of the retention phenomena they wish to
model.

Despite this strength, there are a number of limita-
tions of the Bayesian approach developed here that
should be acknowledged. First, the evidence for any of
the retention models provided by the Bayesian analysis
is merely relative evidence, showing that a particular
function is preferable to its current competitors. The
introduction of additional candidate models into the
analysis could, of course, significantly alter conclusions.
For example, the derivation of Laplacian approxima-
tions for any of the 105 functions considered by Rubin



ARTICLE IN PRESS
M.D. Lee / Journal of Mathematical Psychology 48 (2004) 310–321320
and Wenzel (1996) would be straightforward, and could
be included in future analysis. Other less analytically
tractable models may require the use of numerical
methods, but the basic Bayesian approach to model
selection will still apply.

Secondly, it is important to note that the best
description of retention data that have been averaged
across participants does not necessarily constitute the
best description of the retention in the individual
participants themselves. The basic idea that averaging
data can influence the outcomes of psychological model
testing was examined by Estes (1956), and has been
considered in the context of retention models by a
number of authors (e.g., Anderson & Tweney, 1997;
Wixted & Ebbesen, 1997). A theoretical response surface
analysis, in the context of comparing power and
exponential functions, is provided by (Myung, Kim, &
Pitt, 2000c; see also Heathcote, Brown, & Mewhort,
2000). Since the vast majority of the data sets considered
by Rubin and Wenzel (1996) are averaged across
participants, the results of the Bayesian analysis
presented here do not necessarily indicates that the
retention of individuals is best modeled using the
hyperbolic function.

Finally, it is worth considering the adequacy of the
basic modeling assumptions made in Eq. (3). As noted
above, most of the Rubin and Wenzel (1996) retention
data take the form of averages across blocks of binary
response measures. The assumption that these averages
have Gaussian distributions follows from its approx-
imation to the binomial distribution for moderately
large numbers of observations. One weakness of the
Gaussian assumption is that it gives some probability
density to data values outside the possible interval [0,1],
particularly for average values at the extremes of this
interval. Another weakness is that the current assump-
tion of equal variance Gaussian distributions probably
needs refinement, particularly when retention perfor-
mance is at floor or ceiling levels. An analysis relying on
the binomial distribution would overcome both these
problems, but is only possible with access to more
detailed data, so that the necessary counts can be
formed.

An additional attraction of using the binomial
distribution, with access to individual participant data,
is that the question of individual differences in retention
could be tackled in a principled way (Webb & Lee,
2004). Different parameterizations of a retention func-
tion could be applied to different subsets of participants,
by combining the counts for each participants in the
same subset, and finding the best fitting parameteriza-
tion for each of these combinations. The overall
adequacy of competing models formed in this way
could be measured using the same Bayesian methodol-
ogy presented here. Where genuine individual differ-
ences existed, the additional complexity required by
using additional functions to model the different groups
would be justified. Where between-subject variation
constituted noise, in the sense that it did not show
meaningful structure in terms of the retention functions
being proposed, simpler models proposing fewer in-
dividual variations would be preferred. The study of
individual differences in retention using this approach,
and using the theoretically preferable binomial distribu-
tion, is an important avenue for future research.

In the meantime, however, the Bayesian method
presented here allows goodness-of-fit and model com-
plexity, including functional form complexity, to be
considered when assessing retention models. It provides
a computationally straightforward and easily inter-
preted method for evaluating rival models against data,
and so has the potential to contribute to model
development in a basic enterprise for cognitive psychol-
ogy: describing and predicting how information is
retained over time.
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