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Many theories of learning provide no role for selective
attention (e.g., Anderson, 1991; Pearce, 1994; Rehder &
Murphy, 2003). Selective attention is crucial, however, for
explaining many phenomena in learning. The mechanism
of selective attention in learning is also well motivated by
its ability to minimize proactive interference and enhance
generalization, thereby accelerating learning. Therefore, not
only does the mechanism help explain behavioral phenom-
ena, it makes sense that it should have evolved (Kruschke &
Hullinger, 2010).

The phrase “learned selective attention” denotes three
qualities. First, “attention” means the amplification or at-
tenuation of the processing of stimuli. Second, “selective”
refers to differentially amplifying and/or attenuating a subset
of the components of the stimulus. This selectivity within
a stimulus is different from attenuating or amplifying all as-
pects of a stimulus simultaneously (cf. Larrauri & Schmajuk,
2008). Third, “learned” denotes the idea that the allocation
of selective processing is retained for future use. The allo-
cation may be context sensitive, so that attention is allocated
differently in different contexts.

There are many phenomena in human and animal learning
that suggest the involvement of learned selective attention.
The first part of this chapter briefly reviews some of those
phenomena. The emphasis of the chapter is not the empirical
phenomena, however. Instead, the focus is on a collection
of models that formally express theories of learned attention.
These models will be surveyed subsequently.

Phenomena suggestive of
selective attention in learning

There are many phenomena in human and animal learn-
ing that suggest that learning involves allocating attention to
informative cues, while ignoring uninformative cues. The
following subsections indicate the benefits of selective allo-
cation of attention, and illustrate the benefits with particular
findings.
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Figure 1. Category structures that illustrate benefits of selective
attention. Axes denotes stimulus dimensions. Disks denote stimuli,
with the color of the disk denoting the correct category label. The
structures in the upper row are easier to learn than the corresponding
structures in the lower row.

Attentional shifts facilitate learning

Learning can be faster when selective attention is able to
enhance the relevant cues and suppress the irrelevant cues.
As an example, consider the upper-left panel of Figure 1,
labeled “Filtration”. It shows a two-dimensional stimulus
space, wherein each point represents a stimulus with corre-
sponding values on the two dimensions. For example, Di-
mension B could be the height of a rectangle, and Dimen-
sion A could be the horizontal position of an interior line
segment. The disks indicate the stimuli that were used on
different training trials, and the color of the disk indicates the
correct category label. Notice that for the Filtration structure,
the correct category label can be inferred from Dimension A
alone; Dimension B can be ignored. The lower-left panel
shows a very similar structure labeled “Condensation”. The
only difference is in which stimuli belong to which category.
Notice that for the Condensation structure, the correct cat-
egory label can be inferred only by using information from
both dimensions.

When people are trained on the Filtration and Condensa-
tion structures, the Filtration structure is learned much faster
than the Condensation structure (Kruschke, 1993). This dif-
ference obtains despite the fact that both structures are lin-
early separable, and the clustering of instances is actually
slightly better for the Condensation structure than for the Fil-
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Table 1
Training designs for blocking and highlighting.

Design

Phase Blocking Highlighting

Early A→X F→Y I.PE→E

Late A.B→X C.D→Y I.PE→E I.PL→L

Test B.D→? (Y) I→? (E)
A.C→? (X) PE.PL→? (L)

Note. Each cell indicates Cues→Correct Response. In the
test phase, typical response tendencies are shown in paren-
theses.

tration structure. The Filtration advantage can be naturally
explained by positing selective attention. In the Filtration
structure, people learn to pay attention to the relevant dimen-
sion and they learn to ignore the irrelevant dimension. The
selective attention enhances discriminability along the rele-
vant dimension and greatly enhances generalization across
values of the irrelevant dimension.

Another example is shown in the middle column of Fig-
ure 1. These structures involve stimuli with three binary di-
mensions; e.g., big/small, red/blue, triangle/square. Inspec-
tion of the upper-middle structure, labeled “Type II”, reveals
that the vertical dimension is irrelevant; i.e., it can be ignored
without loss of accuracy. The remaining two dimensions are
relevant, and the categorization is a non-linearly separable,
exclusive-OR on those dimensions. The lower-middle struc-
ture, labeled “Type IV”, merely re-arranges the category as-
signments of the exemplars. In this structure, no dimension
can be ignored if perfect accuracy is to be attained. The
structure is linearly separable, however, and comprises two
prototypes in opposite corners of the stimulus space.

When people are trained on Type II and Type IV, Type II
is faster to be learned, despite the fact that it involves a non-
linearly separable categorization (Nosofsky, Gluck, Palmeri,
McKinley, & Glauthier, 1994; Shepard, Hovland, & Jenkins,
1961). Again this difference can be explained by the action
of selective attention. When learning Type II, people learn to
ignore the irrelevant dimension, thereby quickly generalizing
across that dimension.

Attentional shifting protects previous learning and
accelerates new learning

Consider a situation in which a new response is to be
learned. In this situation, the stimuli that occur for the new
response have some new components but also some com-
ponents that have been previously associated with old re-
sponses. The old components could cause proactive interfer-
ence when trying to learn the new response. However, if the
old components could be selectively suppressed when learn-
ing the new response, learning of the new response would be
accelerated, while the previously learned association would

be protected.
This sort of phenomenon has been observed in a train-

ing design referred to as “highlighting”, and displayed in the
right side of Table 1. The stimuli consist of selectively at-
tendable cues, such as spatially separated words displayed
on a computer screen. In the early phase of training, two
cues, denoted I and PE, occur with outcome E. This case is
denoted I.PE→E. In the late phase of training, those cases
continue, interspersed with cases of a new correspondence:
I.PL→L. The total number of trials of I.PE→E equals the
total number of trials of I.PL→L; there is merely a front-
loading of the I.PE→E cases to assure that they are learned
first. Notice that the two cases are symmetric: The early
outcome E is indicated by a perfect predictor PE and an im-
perfect predictor I, while the late outcome L is indicated by
a perfect predictor PL and the imperfect predictor I. If peo-
ple learn this simple symmetry, then cue I should be equally
associated with outcomes E and L. In fact, people strongly
prefer to respond with E when tested on cue I. This prefer-
ence cannot be trivially explained as a mere primacy effect,
however, because when people are presented with the cue
pair PE.PL, people strongly prefer the outcome L (for a re-
view, see Kruschke, 2010). This “torsion” in the response
preferences, whereby E is preferred for one ambiguous cue
but L is preferred for another ambiguous cue, is called the
highlighting effect.

The highlighting effect can be explained by the action of
selective attention during learning. During the early phase,
people build moderate-strength associations from cues I and
PE to outcome E. During the later phase, when learning
I.PL→L, attention shifts away from I to PL, because attend-
ing to I yields the wrong outcome. With PL attended, and I
ignored, people then learn a strong association for PL to L.
Notice that the learned attentional allocation depends on con-
text. In the context of PE, attention is not shifted away from I,
but in the context of PL, attention is shifted away from I.

Individual differences in selective attention

The magnitude of the highlighting effect varies across in-
dividuals. If the magnitude corresponds with the degree of
attentional shifting, and if the degree of attentional shifting
is a fairly stable individual characteristic, then the magnitude
of highlighting ought to correlate with the magnitude of other
phenomena attributed to selective attention in learning.

This prediction has been confirmed for two other mea-
sures of attention (Kruschke, Kappenman, & Hetrick, 2005).
One measure is the magnitude of “blocking”, which is an-
other sort of response preference in associative learning. The
left side of Table 1 shows that in blocking, late training
consists of equal number of cases of A.B→X and C.D→Y.
The only difference between them is training in the previ-
ous, early phase. A.B→X is preceded by cases of A→X,
wherein A by itself predicts X. This previous training with A
alone apparently blocks learning about B, as assayed by sub-
sequent tests with the conflicting cues B.D, for which people
strongly prefer outcome Y. This weakened association from
B can be explained, at least in part, by learned inattention
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to B: When learning A.B→X, the person already knows that
A indicates X, so it is helpful to learn to suppress the dis-
tracting cue B. Now that blocking has been described, here’s
the point: Across individuals, the magnitude of blocking is
correlated with the magnitude of highlighting. Moreover, eye
tracking reveals that the magnitude of differential gaze at the
cues, during test, is correlated with the magnitudes of high-
lighting and blocking (Kruschke et al., 2005; Wills, Lavric,
Croft, & Hodgson, 2007).

Learned attention perseverates into subsequent
learning

If people learn to attend to some cues or dimensions while
suppressing attention to other cues or dimensions, then it is
natural to suppose that the learned attention should perse-
verate into subsequent training even if the dimension values
and/or the category assignments change. In particular, if the
same dimension remains relevant after the change, then re-
learning should be easier than if a different dimension be-
comes relevant. This prediction, that an intra-dimensional
shift should be easier than an extra-dimensional shift, has
been well established in classical discrimination learning, es-
pecially in situations in which the cue values change when
the relevance shifts (for a review, see, e.g., Slamecka, 1968).

Figure 1 shows a type of shift design that is quite different
from traditional designs and solves some of their problems.
Instead of changing the stimuli or outcomes when the rele-
vance changes, all the stimuli and outcomes stay the same;
only the mapping between them changes. Therefore there is
no novelty in the stimuli or outcomes to indicate a change
across which knowledge must be transferred. Specifically,
learners first were trained on the Type II structure shown in
the upper middle of Figure 1. Then they were seamlessly
shifted to one of the structures shown in the right column
of Figure 1. Both of the right structures have only a sin-
gle relevant dimension. In the upper right (labeled “Relevant
Shift”), the newly-relevant dimension is one of the dimen-
sions that was previously relevant for the Type II structure.
In the lower right (labeled “Irrelevant Shift”), the newly rel-
evant dimension is the dimension that was irrelevant in the
previous Type II structure. Notice that in both shifts there are
exactly four stimuli that change their outcomes, and there-
fore any difference in difficulty of shift cannot be attributed
to how many stimulus-outcome correspondences must be re-
learned. Finally, notice that the Type-II structure of the initial
phase makes all the dimensions have zero correlation with
the outcome. In other words, for any single dimension, there
is 50% probability of both outcomes at both values of the
dimension. Therefore, any difference in difficulty of shift
cannot be attributed to the correlation between the dimension
and the outcome in the initial phase. This type of structure
has been used in subsequent studies by George and Pearce
(1999) and by Oswald et al. (2001).

Results from human learners showed that the relevant shift
was much easier to learn than the irrelevant shift (Kruschke,
1996b). This result is naturally explained by positing learned
attention: People learned to attend to the two relevant dimen-

sions for the Type II structure, and to ignore its irrelevant di-
mension. Therefore, in subsequent training, it was relatively
difficult to learn to attend to the previously irrelevant dimen-
sion.

Analogous results have been obtained for learning after
highlighting and after blocking. When trained on new as-
sociations involving previously highlighted cues, learning
is faster (Kruschke, 2005). When trained on new associa-
tions involving previously blocked cues, learning is slower
(Kruschke & Blair, 2000; Kruschke, 2005; Le Pelley &
McLaren, 2003; Le Pelley, Oakeshott, Wills, & McLaren,
2005). Again, these results are naturally explained in terms
of learned selective attention.

Competition for attention explains effects of cue
salience

If attention has a role in associative learning, then cue
salience should have an effect in learning, because salience
connotes attraction of attention. The term “salience” has no
generally accepted definition, but salience is defined here as
the relatively long-lived ability of a cue to attract attention. A
cue’s salience might be assessed by its initial attentional al-
location at the beginning of an experiment, before additional
learning has shifted attention. The salience of a cue is always
relative to the saliences of other cues that are present at the
same time.

As one example, consider a situation in which words pre-
sented on a computer screen must be associated with corre-
sponding key presses. The word “peek” might indicate press-
ing the F key, while the word “toll” indicates pressing the J
key. The correspondence is probabilistic, however. Suppose
that in addition to those words that are correlated with the
correct key press, the screen also displays other words that
are not correlated with the correct key press. The learner
does not know in advance which words are correlated or un-
correlated with the correct answer. If the words compete
for attention during learning, then learning about the rele-
vant cues should be influenced by the relative salience of the
irrelevant words. If the irrelevant words are highly salient,
such as “boy” and ”cat”, then learning about the relevant
words should be relatively difficult. If the irrelevant words
are obscure and not salient, such as “nabob” and “witan”,
then learning about the relevant words should be relatively
easy. This prediction, which is novel from a specific atten-
tional theory of associative learning, was confirmed in Ex-
periment 4 of Kruschke and Johansen (1999). For this ex-
ample, involving words, salience refers to the encodability
(e.g., concreteness) and associability (e.g., meaningfulness).
In other applications, salience has been instantiated as the in-
tensity or quantity of the cue. For example, when the cue is
the color red, then the cue salience might be manipulated by
the amount or density of red pixels on the computer screen
(Denton & Kruschke, 2006).

As another example, recall the training procedure for
blocking (left side of Table 1). The redundant cue B, added to
the already-learned cue A, was learned to be ignored because
it (cue B) distracted attention from the diagnostic cue. Thus,
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blocking is caused, at least in part, by learned inattention
to the blocked cue. This theory predicts that the degree of
blocking should be modulated by the relative salience of the
to-be-blocked cue. In particular, if cue B is highly salient,
then it should be difficult to block. Indeed, when cue B is
highly salient, it might even dominate learning in the second
phase, actually robbing cue A of some control over respond-
ing. This prediction has been confirmed in humans and ani-
mals (Denton & Kruschke, 2006; Hall, Mackintosh, Goodall,
& Dal Martello, 1977).

Attention can shift between representations

The previous sections have assumed that attention can be
allocated to present/absent cues, such as the word “cat”, or
to values of dimensions, such the specific colors blue and
red, or to entire dimensions, such as height. But attention
can also be allocated to representational systems, such as a
rule system or an exemplar system. The idea is that learners
can associate stimuli with outcomes via a variety of different
types of mappings. Some mappings might be mediated by
exemplars. In an exemplar system, if a stimulus is similar
to exemplars in memory, then the system anticipates the out-
come stored in those exemplars. Other mappings might be
mediated by rules. In a rule system, if a stimulus satisfies
a specific condition, then the system anticipates the corre-
sponding outcome. The condition for a rule typically spans
a much larger area of stimulus space than an exemplar. For
example, a rule might have as its condition, “anything taller
than 3 cm”, whereas an exemplar might have as its condi-
tion, “something very nearly 3 cm tall and 2 cm wide and
colored green and weighing more than a kilogram”. As an-
other example, in learning to map continuous cues to contin-
uous outcomes (i.e., in so-called function learning), an ex-
emplar system would map a cue value near x = 3.0 (say) to
an outcome of y = 6.0 (say), but a rule system could map
any value of x to y = 2x. Learners should allocate atten-
tion to the different types of mappings according to how effi-
ciently and accurately the mappings accommodate the train-
ing items. The allocation of attention among representational
systems is learned, and the tuning of the mappings within the
systems is learned.

Empirical evidence for this sort of attentional allocation
has come from a series of experiments in category learning.
The stimuli for these experiments had two continuous dimen-
sions, like the Filtration and Condensation stimuli on the left
of Figure 1. The structure of the categories was much like
the Filtration structure, for which the stimuli were accurately
classified by a simple rule: If the stimulus has Dimension A
value left of center, then the stimulus is in category 1. But the
structure was more involved than the simple Filtration struc-
ture, because it also had exceptions to the rule. The excep-
tions were arranged so that extrapolation beyond the training
cases could be tested. The attentional theory predicts that
for test cases that are fairly far from the exceptions, but even
farther from the trained rule cases, responses should never-
theless favor the rule-predicted outcomes. This prediction
stems from how attention is allocated to the systems. Atten-

Outcomes

Attention

Stimuli

Learned Mapping

Attentional shift 
before learning

Learned Mapping

× ×

Figure 2. General framework for models of attentional learning.
The stimuli are represented at the bottom of the diagram by activa-
tions of corresponding nodes. Thick curved arrows denote learned
associative mappings. Attention is denoted by “α” in the middle
layer and acts as a multiplier on the stimuli. On a given trial of
learning, attention is shifted before the mappings are learned.

tion goes to the exemplar system especially when the stim-
ulus is highly similar to a known exception, but otherwise
attention may prefer the rule system, which accommodates
most of the training items. This prediction and many oth-
ers have been confirmed in a series of experiments (Denton,
Kruschke, & Erickson, 2008; Erickson & Kruschke, 1998,
2002; Kruschke & Erickson, 1994). Additional evidence
comes from the theory predicting switch costs, i.e., response
time increases, when stimuli switch across trials from be-
ing rule-mapped to being exemplar-mapped, and vice-versa
(Erickson, 2008). Other category learning experiments, us-
ing various other structures and stimuli, along with exten-
sive explorations of models, have bolstered interpretations
in terms of distinct representational subsystems that are al-
located attention in different circumstances (Lewandowsky,
Roberts, & Yang, 2006; Little & Lewandowsky, 2009; Yang
& Lewandowsky, 2003, 2004).

General Framework for Models
of Attentional Learning

The phenomena reviewed in the previous section share
an explanatory framework in which attention is rapidly re-
allocated across cues, dimensions, or representations. The
learning of associations depends on the re-allocation of at-
tention, and the re-allocation is itself learned. Figure 2 dia-
grams this general framework as an associative architecture.
Associations feed forward from the stimuli at the bottom of
the diagram to the outcomes at the top of the diagram.

In the general framework of Figure 2, attention is thought
of as multiplicative gates on the stimulus components. The
attentional gate on a stimulus component is indicated in Fig-
ure 2 by the multiplication sign and the α symbol accom-
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Outcomes

Attention
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Learned Bias

Attentional shift 
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Figure 3. The RASHNL model, successor to ALCOVE. The stim-
uli are assumed to be values on dimensions, and attention is allo-
cated to dimensions. The learned attentional allocation is simplisti-
cally assumed to be a bias that applies equally to all stimuli, unlike
the general framework which allows stimulus-specific attentional
mappings. The mapping from attended stimuli to outcomes is me-
diated by exemplars.

panying each stimulus component. The attentional values
are shifted in response to feedback regarding correct out-
comes. Attention is shifted away from stimulus components
that generate error, toward stimulus components that reduce
error. The re-allocated attention values are then learned, as
associations from the stimuli. The outcomes are learned as
associations from the attentionally filtered stimuli.

The general framework can be instantiated with different
specific formalisms, depending on the situation to be mod-
eled and the complexity demanded by the data. For example,
the mappings between layers might be accomplished by sim-
ple linear associators if the domain and behavior are simple
enough. But a more general model would need more com-
plex representational options to accommodate more com-
plex, non-linear mappings. The remainder of the chapter
reviews several specific formal instantiations of the general
framework in Figure 2.

Particular Instantiations

Learned attention across exemplars: RASHNL /
ALCOVE

Figure 3 shows the RASHNL model (Kruschke & Jo-
hansen, 1999), successor to the ALCOVE (Kruschke, 1992)
model. ALCOVE was a connectionist implementation of the
Generalized Context Model (GCM; Nosofsky, 1986), which
in turn was a generalization of the Context Model (Medin &
Schaffer, 1978). RASHNL is an acronym for “Rapid Atten-
tion SHifts aNd Learning”. The name is a play on the word
“rational” because the model mechanisms are all driven by
the rational goal of error reduction, even though the behav-
ioral results are rash attentional shifts and seemingly irra-

tional generalization behaviors. The name also gives a nod
to the Rational Model of categorization by Anderson (1991).

In the RASHNL model (and ALCOVE), stimuli are rep-
resented by values on psychological dimensions, as denoted
at the bottom of Figure 3. For example, the stimulus might
have a height of 27 and a brightness of 12. The stimulus co-
ordinates, e.g., 〈27, 12〉, are compared to the coordinates of
exemplars in memory. The memory exemplars are activated
to the extent that they are similar to the presented stimulus.
Thus, memory exemplars that are very similar to the stim-
ulus are strongly activated, but memory exemplars that are
highly dissimilar to the stimulus are only weakly activated.
The exemplars then propagate their activation to the outcome
nodes along weighted connections. The weights encode the
learned degree of association between each exemplar and the
outcomes. This exemplar mediation of the mapping to out-
comes from stimulus dimensions is indicated in the upper
right of Figure 3.

The key role for attention is how much each stimulus di-
mension is used in the calculation of similarity. In the Filtra-
tion structure of Figure 1, for example, dimension A will be
strongly emphasized when determining the similarity of the
stimulus to the exemplars, while dimension B will be mostly
disregarded as irrelevant.

When a stimulus is first presented, attention is allocated
to its dimensions according to previously learned biases, as
shown in the lower right of Figure 3. Activation is prop-
agated up to the outcome nodes, to determine a predicted
outcome. The prediction is a magnitude of preference for
each outcome. Then corrective feedback is supplied, and the
discrepancy between the predicted outcome and the actual
outcome is computed. This prediction error is used to drive
all learning in the model.

The first response to the error is a rapid reallocation of
attention. This rapid shift is denoted in the middle right of
Figure 3. Attention is shifted toward dimensions that reduce
error, and away from dimensions that cause error. For exam-
ple, when learning the Filtration structure of Figure 1, error is
reduced by decreasing attention on Dimension B, because the
collapsing of Dimension B brings closer together the exem-
plars that map to the same outcome, whereby learning about
one exemplar enhances generalization to other exemplars.

After the attention to dimensions has been reallocated,
then the model attempts to retain the reallocation for future
use. This learning of the reallocation is stored in the bias
weights. This learning is error driven, just like the initial
rapid reallocation. The bias weights are adjusted to reduce
the discrepancy between the initial attentional allocation and
the reallocation demanded by the actual outcome. It is impor-
tant to understand that the rapid shift of attention, in response
to corrective feedback, is distinct from the learning of that
shift. The shift might be large, but the large shift might not be
retained to the next trial if the shift is not learned. Figure 3,
like the general framework in Figure 2, points out this dis-
tinction by the label, “attentional shift before learning”. The
ALCOVE model, which was the precursor to RASHNL, does
not have a rapid reallocation of attention before the learning
of attention.
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At the same time that the attentional shift is learned, the
model attempts to learn the correct outcomes, by adjusting
associations between the activated exemplars and the out-
come nodes. An associative weight between an outcome and
an exemplar is adjusted only to the extent that the exemplar
is activated and there is error at the outcome node.

This sort of model has been shown to accurately fit learn-
ing performance and generalization behavior in a number
of situations. For example, when applied to the Filtration
and Condensation structures in Figure 1, ALCOVE shows
a robust advantage for Filtration (Kruschke, 1993). When
applied to the Type II and Type IV structures in Figure 1,
ALCOVE again shows accurate fits to human learning data
(Kruschke, 1992; Nosofsky et al., 1994). When applied to
the Relevant and Irrelevant shifts in Figure 1, ALCOVE ex-
hibits a strong advantage for the Relevant shift (Kruschke,
1996b). When applied to situations in which irrelevant cues
have different saliences, as with the words “cat”, “toll”,
and “witan” described earlier, the RASHNL model nicely
captures human utilizations of the cues (Kruschke & Jo-
hansen, 1999). The RASHNL model, with its rapid shifts
of attention, also qualitatively mimics the large individual
differences in attentional allocation seen in human learn-
ers (Kruschke & Johansen, 1999). RASHNL has also used
been used in clinical assessment. For example, men’s at-
tention to women’s facial affect or body exposure, and other
socially-relevant cues, were studied by Treat and colleagues
(Treat, Kruschke, Viken, & McFall, 2010; Treat, McFall,
Viken, & Kruschke, 2001; Treat et al., 2007). Male partici-
pants learned arbitrary category labels assigned to photos of
women. Fits of RASHNL to the learning data revealed that
these two stimulus dimensions were difficult to selectively
attend, and, in particular, that learning to re-allocate attention
away from the initial individual biases was very difficult.

Although RASHNL is a successor to ALCOVE,
RASHNL has not yet been tested on all the data sets for
which ALCOVE has been tested. ALCOVE is nearly (but
not exactly) a special case of RASHNL for which the magni-
tude of rapid attention shifting is set to zero, so in that sense
RASHNL might trivially be able to reproduce the behaviors
of ALCOVE. More challenging, however, would be to simul-
taneously fit the data that motivated the creation of RASHNL
and the data that have been successfully fit by ALCOVE.
For example, it is not known whether RASHNL could re-
produce the advantage of Relevant over Irrelevant shifts that
ALCOVE shows robustly. Presumably the answer is yes, be-
cause attentional learning can be slow even when initial shifts
are large, but simulations have yet to be conducted.

Context-specific learned attention: EXIT / ADIT

Figure 4 shows the EXIT model (Denton & Kruschke,
2006; Kruschke, 2001a, 2001b; Kruschke et al., 2005), suc-
cessor to ADIT (Kruschke, 1996a). Ideas similar to those
formalized by ADIT were previously described informally
by Medin and Edelson (1988). The name ADIT is an
acronym for Attention to Distinctive InpuT. The word “adit”
refers to an entrance to a place that is mined, and so the play

Outcomes

Attention

Cues

Attentional shift 
before learning

Linear 
Learned Mapping

× ×

Exemplar-Mediated 
Learned Mapping

Figure 4. The EXIT model, successor to ADIT. The stimuli are
assumed to be present/absent cues. The mapping from cues to atten-
tion is exemplar-mediated, whereas the mapping from attentionally
gated cues to outcomes is simplistically assumed to be linear.

on words is that the model is an entrance to the mind. The
successor model, EXIT, was so named because an exit can
come after an adit.

EXIT is another instantiation of the general framework of
Figure 2. The EXIT model assumes that stimuli are repre-
sented as present/absent cues (instead of values on dimen-
sions, as in RASHNL). Most importantly, EXIT assumes
that the learned attentional allocation can be exemplar spe-
cific. Thus, attention might be allocated one way for some
stimuli, but a different way for other stimuli. RASHNL and
ALCOVE do not have this flexibility. The allocation of at-
tention in EXIT is a learned mapping from stimulus cues to
attentional values, mediated by exemplars. A comparison of
EXIT in Figure 4 and RASHNL in Figure 3 shows this con-
trast in the associative weights going into the attention gates.

Because EXIT has been applied to relatively simple map-
pings of stimuli to outcomes, the model incorporates only a
linear associator to outcomes from attended cues. This use of
a linear associator on the outcome layer is merely for simplic-
ity and reduction of parameters. If the model were applied to
more complex situations, a more complex associator would
have to be used, such as the exemplar-mediated associator
used in RASHNL. This option is discussed more in a later
section.

Aside from the representational differences just described,
processing in EXIT proceeds much like processing in
RASHNL. When a stimulus appears, activation is propagated
up the network and an outcome is predicted. Corrective feed-
back is provided, and the degree of error is computed. At
this point, attention is rapidly reallocated across the cues,
away from cues that cause error, to cues that reduce error.
This re-allocated attention serves as a target for error-driven
subsequent learning of associations from stimulus cues to at-
tentional allocation. As in RASHNL, attention shifting and
attention learning are two distinct steps of processing. In
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particular, it is possible to have shifting without learning of
the shifts, as was assumed in the ADIT model.

EXIT (and ADIT) have been shown to fit many complex
data sets from human learning experiments, including the
highlighting and blocking designs in Table 1 (Denton & Kr-
uschke, 2006; Kruschke, 1996a, 2001a, 2001b, 2005; Kr-
uschke et al., 2005). EXIT is especially good at capturing
detailed choice preferences for a variety of cue combinations
tested after highlighting. EXIT accomplishes this mimicry
of human responding by the way the model shifts and learns
attentional allocation to cues, especially during learning of
the late-phase cases of I.PL→L (see Table 1). When a case
of I.PL→L appears, attention is allocated away from cue I,
because it is already associated with the other outcome E, and
attention is shifted toward cue PL, because it does not conflict
with the correct outcome. The attentional reallocation is then
learned, specific to the cue combination I.PL. In other words,
EXIT learns that when stimuli I.PL are presented, suppress
attention to I and attend to PL, but when stimuli I.PE are
presented, maintain some attention to both cues.

Because EXIT has learned an attentional allocation for
particular cues, this learning will persist into subsequent
phases of training. In particular, if subsequent phases of
training have stimulus-outcome mappings with the same rel-
evant cues, then subsequent learning should be easy. But
if subsequent training has a stimulus-outcome mapping with
different relevant cues, then the subsequent learning should
be relatively difficult. These predictions have been confirmed
and modeled by EXIT (Kruschke, 2005). For example, after
highlighting, participants continued into subsequent training
for which two novel outcomes were perfectly predicted by
two cues that played that roles of the imperfect predictors in
the previous highlighting phases. For some participants, the
I cues were accompanied by the PE cues from the previous
highlighting phases. When accompanied by PE, the I cues
should receive some attention, and therefore the new learning
should be relatively easy. Other participants learned about
the I cues accompanied by PL cues from the previous high-
lighting phases. When accompanied by PL, the I cues should
receive less attention, and therefore the new learning should
be relatively difficult. This prediction was confirmed, and
modeled by EXIT. Analogous results have been shown and
modeled for blocking (Kruschke & Blair, 2000; Kruschke,
2001b, 2005).

EXIT and ADIT have also been shown to accurately fit
human choice preferences for a variety of probabilistic map-
pings, and structures involving differential base rates of the
categories. One of the benefits of the attentional interpre-
tation provided by the models is that some of the empir-
ical phenomena can be better understood. In particular,
some findings regarding differential base rates could be re-
interpreted in terms of attention shifts caused by the induced
order of learning (Kruschke, 1996a, 2010). When two cate-
gories have very different base rates, the high-frequency cat-
egory is learned first. The low-frequency category is subse-
quently learned, and attention is re-allocated during learning
of the low-frequency category. The attentional re-allocation
accounts for many choice preferences that are otherwise the-

oretically perplexing.
In general, attentional re-allocation is beneficial for fast

learning. For example, when learning I.PL→L in the late
phase of highlighting, the shift of attention away from cue I
protects the previously learned association from I to E,
thereby retaining that association for accurate future predic-
tion of outcome E. Learning of the shift also prevents sub-
sequent errors on when I.PL are presented again, because
attention is allocated away from cue I. Thus, attentional al-
location is a mechanism by which an organism can acceler-
ate learning of new items while retaining knowledge of old
items. This argument has been suggested in several previous
publications (e.g., Kruschke & Johansen, 1999; Kruschke,
2003c). Recently it has been shown that when connectionist
architectures are evolved using simulated genetic algorithms,
the optimal architectures are ones, like EXIT (Kruschke &
Hullinger, 2010), that have the ability to rapidly reallocate
attention across cues. In the simulated evolution, the only
adaptive pressure put on the evolving learners was to learn
fast, i.e., to have as little total error as possible during the
lifetime of the organism. One of the key structural aspects
of the training environment was that some cues changed less
frequently than others. The slowly changing cues formed
the context for the rapidly changing cues, and the attentional
reallocation took advantage of changing cues relevances in
different contexts.

Attentionally modulated exemplars and exemplar-
mediated attention

A comparison of RASHNL (Figure 3) and EXIT (Fig-
ure 4) invites two natural generalizations. First, the
present/absent cues assumed by EXIT might be generalized
to dimensions, as assumed in RASHNL. Such a generaliza-
tion has been explored, wherein a dimensional value is repre-
sented by thermometer-style encoding of present/absent ele-
ments that represent levels on the dimension (Kalish, 2001;
Kalish & Kruschke, 2000). In these models, attention can be
allocated to different dimensions, and also to different values
within dimensions. It remains to be seen whether or not this
approach will be useful as a general solution to representing
stimuli and selective attention to their components.

Second, a general model would allow exemplar-mediated
mapping at both the attentional and outcome levels. Such
a generalization has been developed and reported at confer-
ences (Kruschke, 2003a, 2003b), but not yet published. In
this generalized model, the exemplars that mediate the out-
come mapping are attentionally modulated, as in RASHNL.
In addition, there are exemplars that mediate the attention
mapping, as in EXIT. Hence the model has attentionally
modulated exemplars and exemplar-mediated attention. The
attentional modulation on the exemplars also determines
whether or not new exemplars are recruited during learning:
If attention shifts away from candidate exemplars, they are
not retained.

A key aspect of this generalization is that exemplars for
the outcome-mapping encode both the cues and the attention
paid to them. This is different than the type of exemplars
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Figure 5. The ATRIUM and POLE models, both instances of a
mixture-of-experts architecture. Attention is allocated to “experts”,
each of which constitutes a complete learning system from stimuli
to outcomes. The mapping from stimuli to attention is exemplar-
mediated, so that different experts can dominate in different con-
texts. The internal details of the experts are not shown. The final
outcome is a mixture or choice from among the attended experts.

used in RASHNL and ALCOVE. Instead, these generalized
exemplars record the cues and their attentional gating. In
other words, an exemplar for the outcome mapping contains
not only the stimulus coordinates, but it also contains the at-
tentional allocation when that stimulus is processed. An in-
teresting consequence of this representation is that the atten-
tional values that are stored in the exemplars can be adjusted
to reduce error, and this error-driven adjustment of exemplar-
specific attention accounts for so-called “retrospective reval-
uation” effects. Retrospective revaluation occurs when new
learning occurs for a cue even when it is not present in the
stimulus. In the generalized model, an exemplar node that
encodes a present cue can retrospectively reduce or increase
its stored attention to that cue, even when that cue is not
present in the current stimulus. This approach to retrospec-
tive revaluation is promising, but was eclipsed by Bayesian
approaches, discussed in a subsequent section. Nevertheless,
the generalized exemplar approach deserves renewed atten-
tion in the future.

Mixture of Experts: ATRIUM / POLE
As mentioned in the introduction, attention can be allo-

cated to representational systems, in addition to cues or di-
mensions or values on dimensions. For example, one rep-
resentational system may map stimuli to outcomes via ex-
emplar memory, while another representational system may
map stimuli to outcomes via condition-consequent rules.

Figure 5 shows the basic structure of models that learn to
allocate attention among “expert” subsystems. Each expert
learns its own mapping from stimuli to outcomes, using its
own form of representation. Which expert takes responsibil-
ity, for learning and responding to any particular stimulus,

is determined by a gating network. The gating network is
indicated in Figure 5 as an exemplar-mediated, learned map-
ping. As is the case for all the models described so far, the
allocation of responsibility to experts is driven by error re-
duction: Attention is allocated to experts that accommodate
the current training case, and attention is allocated away from
experts that cause error. These models are cases of a mixture-
of-experts architecture (Jacobs, Jordan, Nowlan, & Hinton,
1991; Jacobs, Jordan, & Barto, 1991).

The ATRIUM model has been used to model learning of
categories in which the structure can be intuitively described
as a rule with exceptions (Erickson & Kruschke, 1998; Kr-
uschke & Erickson, 1994). As mentioned in the introduc-
tion, one of the key findings is that when people are tested
with novel cases that demand extrapolation away from the
training cases, responses are usually consistent with the rule,
despite the fact that the nearest training case was an excep-
tion to the rule. Although some researchers have challenged
the generality of the findings or shown that a variation of
an exemplar-only model can capture some aspects of the
findings (Nosofsky & Johansen, 2000; Rodrigues & Murre,
2007), follow-up experiments have repeatedly demonstrated
that the effect is robust and that exemplar-only models cannot
accommodate extrapolation of rules with exceptions, while
the mixture-of-experts ATRIUM model can (Denton et al.,
2008; Erickson & Kruschke, 2002). Thus, rule and excep-
tion learning continues to challenge exemplar-only models,
and mixture-of-expert models continue to better fit the data.
Results from other category structures also point to the util-
ity of mixture-of-expert models (Lewandowsky et al., 2006;
Little & Lewandowsky, 2009; Yang & Lewandowsky, 2003,
2004).

Analogous findings have been found in function learning.
In function learning, instead of mapping stimuli to categori-
cal outcomes, both the stimuli and outcomes are metric. Typ-
ically some simple function relates the input to output val-
ues, such as a linear or low-order polynomial. Consider a
situation in which most of the training cases follow a sim-
ple linear function, but a few exceptions deviate from the
line. In particular, one of the exceptions is the most extreme
of the trained stimulus values. When tested for extrapola-
tion beyond this last training case, people tend to revert to
the rule, rather than respond according to the nearest (ex-
ception) exemplar. Several cases of this sort of behavior
were reported and modeled by Kalish, Lewandowsky, and
Kruschke (2004). The model was a mixture-of-experts archi-
tecture called POLE (Population Of Linear Experts) in which
expert modules for simple linear functions were gated along
with exemplar-based experts. The model learned to allocate
responsibility to the linear expert except when the stimulus
was very similar to one of the learned exceptions.

Finally, the classic attentional model of Mackintosh
(1975) can be generalized and re-expressed in a mixture-of-
experts framework (Kruschke, 2001b). Each expert consists
of a single distinct cue, trying to learn on its own to pre-
dict the presence or absence of the single outcome (i.e., the
unconditioned stimulus in animal conditioning experiments).
The attentional gate allocates responsibility to the cues to the
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extent that they successfully predict the outcome.

Locally Bayesian Learning

The previous instantiations of the general framework have
all relied on error-driven learning, i.e., gradient descent on er-
ror as in backpropagation (Rumelhart, Hinton, & Williams,
1986). In all those models, the knowledge of the model at
any time consists of a single specific combination of asso-
ciative weights. There is no representation of other weight
combinations that might be nearly as good.

An alternative formalization of learning comes from a
Bayesian approach. In a Bayesian learner, multiple possi-
ble hypotheses are entertained simultaneously, each with a
learned degree of credibility. For example, consider a situa-
tion with two cues, labeled A and B, and a single outcome X.
The Bayesian learner might entertain three possible hypothe-
ses: HA(¬B): A, but not B, indicates X; HB(¬A): B, but not A,
indicates X; and, HA∨B: A or B indicate X. If the Bayesian
learner experiences training cases of A→X, then the cred-
ibilities of HA(¬B) and HA∨B increase, while the credibility
of HB(¬A) decreases. “Hypotheses” need not be expressed
as logical rules. Indeed, most Bayesian models involve hy-
potheses about mappings that have continuous values, and
the hypothesis space consists of the infinite space of all pos-
sible combinations of the continuous values. The fact that
the hypothesis space is infinite does not mean that a Bayesian
learner needs an infinite-capacity mind. On the contrary, the
credibility of the infinite hypotheses can be summarized by
just a few values, as, for example, the mean and standard de-
viation summarize an infinitely wide normal distribution. An
infinite distribution can also be summarized approximately
by a large representative sample.

Bayesian learning models have many attractions, both in
terms of their general computational abilities and as mod-
els of mind. There is not space here to review their many
applications, but an overview is provided by Chater, Tenen-
baum, and Yuille (2006), and a tutorial of their application
to associative models is provided by Kruschke (2008). One
learning phenomenon that is easily explained by Bayesian
models, but that is challenging for many non-Bayesian asso-
ciative models, is backward blocking. In backward blocking,
the training phases of the blocking procedure in Table 1 are
run in backward order. Curiously, the blocking effect is still
exhibited by human learners (e.g., Shanks, 1985; Dickinson
& Burke, 1996; Kruschke & Blair, 2000). In Bayesian ac-
counts of backward blocking, different combinations of as-
sociative weights are considered simultaneously, with more
belief allocated to the combination that is most consistent
with the training items. Because the cases of A→X decrease
the credibility of HB(¬A), as explained in the previous para-
graph, cue B is effectively blocked regardless of when the
cases of A→X occur (Dayan & Kakade, 2001; Tenenbaum
& Griffiths, 2003).

A theoretical framework that combines the attentional and
Bayesian approaches is called “locally Bayesian learning”
(LBL, Kruschke, 2006b). The overall LBL framework is
quite general and does not rely on any notion of attention.

Outcomes

Attention

Stimuli

Attentional shift 
before learning

Locally Bayesian 
Learning

× ×

Locally Bayesian 
Learning

Figure 6. Locally Bayesian learning applies generally to compo-
nential models. Here it is applied to the case in which the first layer
learns to allocate attention, and the second layer learns to generate
an outcome, given the attended stimuli.

The general LBL framework is based on the idea that a learn-
ing system may consist of a sequence of subsystems in a
feed-forward chain, each of which is a (locally) Bayesian
learner. The argument for locally-learning layers was as fol-
lows. First, Bayesian learning is very attractive for explain-
ing retrospective revaluation effects such as backward block-
ing, among many other phenomena (Chater et al., 2006).
Second, Bayesian learning may also be unattractive for a
number of reasons. In highly complex hypothesis spaces, it
may be extremely difficult to accomplish even approximate
Bayesian learning. In other words, keeping track of all viable
hypotheses, even approximately, may be computationally in-
tractable. Furthermore, many globally Bayesian models do
not explain learning phenomena such as highlighting (Ta-
ble 1) that depend on training order, because the models treat
all training items as equally representative of the world to be
learned, regardless of when the items occurred. Finally, the
level of analysis for theories of learning is arbitrary: Learn-
ing occurs simultaneously at the levels of neurons, brain re-
gions, functional components, individuals, committees, in-
stitutions, and societies, all of which may be modeled (in
principle) as Bayesian learners. Therefore, a system of lo-
cally Bayesian learning components may retain some attrac-
tions of Bayesian models while also implementing Bayesian
learning in smaller, tractable hypothesis spaces.

The general framework for locally Bayesian learning has
been instantiated in a particular two-layer model, wherein
one layer learns how to allocate attention to cues, and a sec-
ond layer learns how to associate attended cues with out-
comes (Kruschke, 2006b, 2006a). Figure 6 shows the struc-
ture of the model. When a stimulus is presented, the model
generates a predicted outcome as follows. The mapping,
from stimuli to attention allocation, comprises many candi-
date hypotheses regarding how to allocate attention. Each
hypothesis has a degree of credibility at that point in train-
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ing. The actual allocation of attention is taken to be the av-
erage allocation across all the hypotheses, weighed by their
credibilities. The attentionally gated stimulus is then deliv-
ered to the next layer, which maps the stimulus to outcomes.
This layer again consists of many candidate hypotheses, each
with a degree of credibility. The predicted outcome is the
average of the predicted outcomes across all the hypotheses,
weighted by their credibilities.

When corrective feedback is presented, learning occurs.
(There are different possible learning dynamics. The one
described here is the one that most closely mimics the pro-
cessing of previously described attentional models.) First,
the top-most layer determines which allocation of attention
would best match actual correct outcome. In other words, the
system finds the allocation of attention that would be most
consistent with the currently credible hypotheses of the out-
come layer. This is the “rapid shift of attention before learn-
ing”. This best allocation of attention is treated as the target
for the lower layer. With the attention reallocated, both layers
than learn according to standard Bayesian inference. In the
attentional layer, credibilities are shifted toward hypotheses
that are consistent with the current stimulus being mapped
to the target allocation of attention. In the outcome layer,
credibilities are shifted toward hypotheses that are consistent
with the attended components being mapped to the correct
outcomes.

This locally Bayesian learning generates behavior that de-
pends on training trial order. The reason, that learning de-
pends on trial order, is that the internal attentional target de-
pends on the current beliefs in the outcome layer. In other
words, a particular stimulus and actual outcome will be given
different internal attentional targets, depending on the current
credibilities of outcome hypotheses.

The highlighting effect (recall Table 1) is a trial-order ef-
fect. Highlighting occurs robustly even when the total fre-
quency of each category is the the same (Kruschke, 2010).
Highlighting occurs in the LBL model because of how atten-
tion is allocated in the late-training phase. By the time the
late-training phase has occurred, the model’s outcome layer
has established some credibility in associations from cue I
to outcome E. When the training case I.PL→L occurs, the
model reallocates attention away from cue I, because leav-
ing attention on I violates its current beliefs. Then the model
learns, in its lower layer, that when I.PL occur, allocate atten-
tion away from I toward PL. The model’s upper layer retains
its belief that cue I is associated with outcome E.

Whereas it is difficult for many globally Bayesian mod-
els to account for highlighting, LBL can. In addition, un-
like the non-Bayesian models such as EXIT, LBL can also
account for backward blocking, as mentioned earlier. Back-
ward blocking is accommodated by the upper layer in LBL,
but backward blocking of cues to outcomes does not require
Bayesian learning in the lower layer. Recent empirical work
has provided suggestive evidence that there can also be back-
ward blocking of cues that are themselves uncorrelated with
the outcomes, but which indicate what other cues are rel-
evant to the outcome. This backward blocking of cues to
relevance can be accommodated by Bayesian learning in the

lower layer of the LBL architecture (Kruschke & Denton,
2010).

The description of LBL has been informal, because the
exact mathematical expression can take different forms. For
example, Kruschke (2006b) implemented LBL with a small
finite set of weight combinations in a nonlinear mapping. On
the other hand, Kruschke and Denton (2010) implemented
LBL with layers of Kalman filters, which represent infinite
spaces of possible associative weight combinations in linear
mappings. (An introduction to Kalman filters is provided in
Kruschke, 2008) Both approaches show the same qualitative
behavior.

In summary, LBL in general alleviates some of the compu-
tational problems of globally Bayesian learning, yet retains
the attraction that learning may be Bayesian at some levels of
analysis. LBL as specifically applied to attentional learning
exhibits many human learning phenomena that are challeng-
ing to globally Bayesian models or to non-Bayesian models.

Relations to other models, and
possible generalizations

The general attentional framework described in the previ-
ous sections has emphasized how attention shifts toward rep-
resentational components (such as cues, dimensions, or ex-
pert modules) that accommodate the goal (such as accurately
predicting the outcome), and how attention shifts away from
representational components that conflict with, or are irrele-
vant to, the goal. In other words, the attentional mechanism
pays attention to information that is useful, and ignores in-
formation that is useless. Attentional mechanisms effectively
compress out redundancies in the stimulus encoding, simpli-
fying the encoding of information, and minimizing the de-
scription length of conditions for generating responses. At-
tentional shifting might be construed as a mechanism for on-
the-fly discovery of minimal encoding. Thus, the attentional
approach has conceptual affinity with the simplicity model of
Pothos and Chater (2002), as summarized by Pothos, Chater
& Hines (Chapter 9 of this volume). Further suggestive of
a close relation between attention and encoding simplicity is
the fact that ALCOVE, which dynamically re-allocates at-
tention, predicts the relative difficulties of different category
structures much like (but not always exactly the same as) the
ordering predicted by the theory of structural complexity and
categorical invariance by Vigo (2006, 2009). Attention might
also be construed as a mechanism that mimics or implements
prior beliefs about candidate rule structures, as formalized in
some Bayesian approaches to category learning (Goodman,
Tenenbaum, Feldman, & Griffiths, 2008).

All of the instantiations of the general attentional frame-
work in Figure 2 have intellectual ancestors and cousins.
The ALCOVE model, in particular, is a direct connec-
tionist implementation of the Generalized Context Model
(GCM; Nosofsky, 1986), which is summarized by Nosof-
sky (Chapter 2 of this volume). ALCOVE extends the GCM
by providing a mechanism whereby the dimensional atten-
tion strengths are learned (rather than freely estimated to
fit data at different points in training) and the exemplar-to-
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outcome associations are learned (rather than set equal to co-
occurrence frequencies). One advantage of ALCOVE over
the GCM is that ALCOVE provides a simple and intellec-
tually appealing learning mechanism, with only two learn-
ing rate parameters (on attention and association weights)
instead of several dimensional attention parameters. Some
disadvantages of ALCOVE are that the learning mechanism
might not mimic actual learning performance, and that pre-
dictions of ALCOVE can only be ascertained via trial-by-
trial simulations of entire training sequences whereas predic-
tions of the GCM do not require trial-by-trial training.

Exemplars in ALCOVE and RASHNL were, for conve-
nience, assumed to be either (1) preloaded as a random cov-
ering of the stimulus space, or (2) preloaded because of prior
exposure to, or inference about, the range of possible stim-
uli, or (3) recruited on-the-fly when novel stimuli occurred.
A different mechanism for recruiting exemplars was used in
the model described in the section of this chapter headed “at-
tentionally modulated exemplars and exemplar-mediated at-
tention”. In that section it was mentioned that exemplars can
mediate the mappings in both layers of the general frame-
work, and the exemplar activations can themselves be at-
tentionally modulated. When attention modulates the exem-
plars, the attentional modulation can govern whether candi-
date exemplars, elicited by stimuli on every trial, are retained
for future learning or retired after that trial. Specifically,
if attention is shifted toward a candidate exemplar (because
previously learned exemplars cause error), it is retained, but
if attention is shifted away from a candidate exemplar (be-
cause previously learned exemplars are already performing
well), it is retired. Notice that this mechanism constitutes an
error-driven attentionally-based exemplar recruitment mech-
anism. This recruitment mechanism may be similar in spirit
to cluster recruitment in the supervised mode of the SUS-
TAIN model (Love, Medin, & Gureckis, 2004), summarized
by McDonnell and Gureckis (Chapter 10 of this volume),
but SUSTAIN uses an error threshold for recruitment instead
of an attentional mechanism. SUSTAIN also recruits clus-
ters during unsupervised learning, using a novelty threshold,
which might be mimicked in the proposed model by atten-
tional shifts in an auto-encoding architecture (in which the
outcome layer includes a copy of the cues). The ability of
SUSTAIN to create adjustable clusters is a representational
advantage over exemplar-only models. Future models may
benefit from combining the clustering ideas of SUSTAIN
with other mechanisms of cluster recruitment.

Exemplar representation has also been the subject of ex-
tensive investigation by animal-learning researchers, albeit
under the rubric of “configural” versus “elemental” repre-
sentations. A prominent configural model in animal learn-
ing was created by Pearce (1994). The configural model
is analogous to ALCOVE in many ways, such as having
error-driven learning of associative weights between config-
ural units and outcomes. But it differs from ALCOVE sig-
nificantly by having no selective attention to cues, whereby
different cues within a stimulus are selectively amplified or
attenuated. Configural models are contrasted with elemen-
tal models, which attempt to account for learning by using

stimulus representations only of individual cues, instead of
combinations of cues. A prominent example of an elemental
approach is the basic version of the Rescorla-Wagner model
(without configural cues; Rescorla & Wagner, 1972), upon
which the ADIT model is based. Other elemental models
include the one by McLaren and Mackintosh (2000, 2002)
which uses a representation akin to stimulus-sampling the-
ory (SST; Atkinson & Estes, 1963; Estes, 1962) and is sum-
marized by Livesey and McLaren (Chapter 7 of this vol-
ume). Another intriguing elemental model has been reported
by J. A. Harris (2006), also based on SST but which includes
a limited-capacity attention buffer. These elemental models,
like Pearce’s configural model, have no learned selective at-
tention to cues. Future generalizations might profitably com-
bine SST-like cue representations with learnable, selective
attentional shifting, perhaps not unlike the manner explored
by Kalish and Kruschke (2000).

The notion of learned selective attention to specific cues
has a long heritage, however, in both animal and human
learning research. As just one example from human-learning
research, Medin and Edelson (1988) informally expressed
ideas about attention shifting that were subsequently formal-
ized in the ADIT and EXIT models. In the animal learning
literature, the model of Mackintosh (1975) described how
cue associabilities may adapt through training. Mackintosh’s
heuristic formalism was shown subsequently to be closely
related to a mixture-of-experts model in which each expert
is a single cue acting individually to predict the outcome
(Kruschke, 2001b). The EXIT model instead sums the in-
fluences of the cues, thereby generating different behaviors
(such as conditioned inhibition, see Kruschke, 2001b).

Both EXIT and ATRIUM use exemplars to mediate the
mapping from input to attentional allocation. This al-
lows the models to learn stimulus-specific attentional alloca-
tion. EXIT has stimulus-specific attention to cues, whereas
ATRIUM has stimulus-specific attention to representational
modules. Another prominent model that uses distinct repre-
sentational modules is the COVIS model of Ashby, Alfonso-
Reese, Turken, and Waldron (1998), summarized in its cur-
rent form by Ashby, Paul and Maddox (Chapter 4 of this
volume). ATRIUM and COVIS are analogous insofar as
they both have rule-like and exemplar-like subsystems. Al-
though both models are founded on the idea that people can
learn category mappings via different representational sub-
systems, the formalizations of the idea have different moti-
vations in the two models. ATRIUM was motivated by a
unifying mathematical aesthetic, whereby the rule module
and the exemplar module and the gating between them are all
driven by the same mechanism: gradient descent on the over-
all error. COVIS was motivated by neuropsychological con-
siderations, such that the rule (i.e., explicit verbal) subsys-
tem has formalisms motivated by hypothesis testing, and the
exemplar-like (i.e., procedural) system has formalisms mo-
tivated by neural mechanisms, and the competition between
the subsystems is driven by a separate heuristic that combines
the long-term accuracies of the modules (i.e., their “trust”)
with the decisiveness of each module regarding the current
stimulus (i.e., their “confidence”). The module-combination
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rule in COVIS is not stimulus-specific, but the module-gating
mechanism in ATRIUM is stimulus-specific. This difference
between the models generates different predictions for the
category structure used by Erickson (2008).1 That struc-
ture combined a one-dimensional rule, similar to the filtra-
tion structure in Figure 1, with an “information integration”
structure, similar to the condensation structure in Figure 1,
simultaneously in different regions of stimulus space. Con-
sider stimuli that are near the boundary of the information-
integration (i.e., condensation) training items, which are si-
multaneously far from any of the one-dimensional rule (i.e.,
filtration) training items. In ATRIUM, these stimuli will be
given responses from information-integration categories, be-
cause the gating mechanism is stimulus-specific and there-
fore allocates attention to the exemplar module. In COVIS,
on the other hand, these stimuli will be given responses corre-
sponding to the one-dimensional rule, because the exemplar-
like (procedural) module has very low confidence but the rule
module has very high confidence. There are many other dif-
ferences in details of the models, which future research may
explore. Insights from the two models, and the phenomena
to which they have been applied, might profitably be merged
in a future generalization.

Essentially all the models mentioned in the preceding
paragraphs learn by some form of error reduction. None of
the models learns by applying Bayes’ rule to the space of
possible representations that could be learned. In a previ-
ous section of the chapter, the method of locally Bayesian
learning (LBL) was described, wherein the learned atten-
tional allocation and the learned mapping from (attention-
ally filtered) stimuli to outcomes are learned in a Bayesian
fashion. The implementation of each layer in LBL can be
any Bayesian associator. For example, Kruschke (2006b)
used linear sigmoids with a finite space of weight combi-
nations, but Kruschke and Denton (2010) used Kalman fil-
ters. Kruschke (2006b) suggested that the layers could in-
stead be implemented by the (approximately Bayesian) Ra-
tional Model of Anderson (1991). Indeed, the fully Bayesian
nonparametric approach of Sanborn, Griffiths, and Navarro
(2006), summarized in its developed form by Griffiths, San-
born, Canini, Navarro, and Tenenbaum (Chapter ** of this
volume), could be used instead. Alternatively, the layers
could learn about latent causes in a sigmoid-belief network,
as proposed by Courville, Daw, and Touretzky (2006). All
of these different representations incorporate the intellectual
appeal of Bayesian rationality for local learning, along with
the benefit of accounting for complex learning phenomena
such as backward blocking, and the explanatory power of
attentional learning.

Finally, the last few Bayesian models that were men-
tioned, such as nonparametric clustering and latent causes,
are non-directional models: Unlike the feed-forward pre-
diction of outcomes from stimuli, assumed by the diagrams
throughout this chapter, these models simultaneously gener-
ate stimulus features and outcome features, and predict miss-
ing values from any other present values. (In the Bayesian
literature, such models are referred to as “generative” as
opposed to “discriminative”.) Non-Bayesian connectionist

models can also be designed to allow prediction of any miss-
ing features. Such models could involve feedback connec-
tions, as in the KRES model of Rehder and Murphy (2003)
(cf. the model’s recent generalization summarized by Har-
ris and Rehder in Chapter 12 of this volume), or the models
could instead use autoencoder-style architectures that have
the complete stimulus pattern included in the output pattern
to be predicted. This space of modeling possibilities is huge,
but it is likely that accurate models of human learning will
involve mechanisms for learned selective attention.
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